If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4t^2+8t-32=0
a = 4; b = 8; c = -32;
Δ = b2-4ac
Δ = 82-4·4·(-32)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-24}{2*4}=\frac{-32}{8} =-4 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+24}{2*4}=\frac{16}{8} =2 $
| 10=-10(k=9) | | -44=-6q-14 | | 10=-10(k=9 | | r+0.58=1.47 | | t+10-4t=1 | | -14=4c-2 | | (5x-13)+(2x+15)+(3x+8)=180 | | 900=-100x+300 | | n-48=126 | | (10x+3)+27=180 | | 5g-9=-24 | | 24=3r4 | | -5+7a=30 | | 6x+6=—120-8x | | 24=9+3z | | x-10=22x= | | 2y/3=52 | | 3s-13=22 | | 9x-7=-4x+5 | | 7z+11+123=180 | | 5d-9=-34 | | 7a-18=a+6 | | -2(7x+3)=-14x+6 | | 8n-12=-4 | | 44=-4x+12 | | -12x+12(4x-4)=6(1+5x)10 | | 30=2•y | | 10x-5=2x-1 | | -4-3m=2 | | 7=t/4+4 | | x^{2}-8x+11=0 | | (x+4)=110 |